Research Grants
- NSF SES-1902195: 2018-2021.
- Collaboration Grants for Mathematicians (Award ID: 524205), Simons Foundation: 2017-2018.
Statistical Methodology/Machine Learning
- Ren, Y., Zhu, X.(+), Xu, G.(+), Ma, Y. (2024+) “Multi-relational Network Autoregression Model with Latent Group Structures”, submitted. (+: joint corresponding authors.)
- Liu, W.(∗), Xu, G.(∗), Fan, J., Zhu, X. (2024+) “Two-way Homogeneity Pursuit for Quantile Network Vector Autoregression”, submitted. (∗: joint first authors with equal contributions.)
- Jalilian, A., Cuevas-Pacheco, F., Xu, G., and Waagepetersen, R. (2024+) “Composite likelihood inference for space-time point processes”, submitted.
- Lu, C., Guan, Y., van Lieshout, MC., and Xu, G.. (2024+) “XGBoostPP: Tree-based estimation of point process intensity functions”, submitted.
- Jalilian, A., Poinas, A., Xu, G., and Waagepetersen, R. (2024+) “A central limit theorem for a sequence of conditionally centered and -mixing random fields”, under revision.
- Li, K., Liu, R., Xu, G., and Shang, Z. (2024) “Nonparametric Inference under B-bits Quantization”, Journal of Machine Learning Research, 25(19), 1−68.
- Fang, G.(∗), Xu, G.(∗), Xu, H., Zhu, X., Guan, Y. (2023) “Group Network Hawkes Process”, Journal of the American Statistical Association, Theory & Method, in press. (∗: joint first authors with equal contributions.)
- Zhu, X.(∗), Xu, G.(∗), Fan, J. (2023) “Simultaneous Estimation and Group Identification for Network Vector Autoregressive Model with Heterogeneous Nodes”, Journal of Econometrics, 105564. (∗: joint first authors with equal contributions.)
- Liu, R., Xu, G.(∗), and Shang, Z. (2023) “Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory”, Statistics and Computing, 33(96).
- Xu, G., Zhang, J., Li, Y., and Guan, Y. (2022) “Bias-correction and Test for Mark-point Dependence with Replicated Marked Point Processes.” Journal of the American Statistical Association, Theory & Method, in press.
- Chu, T., Guan, Y., Waagepetersen, R., and Xu, G. (2022) “Quasi-Likelihood for Multivariate Spatial Point Processes with Semiparametric Intensity Functions.” Spatial Statistics, 100605.
- Xu, G., Liang, C.(#), Waagepetersen, R., and Guan, Y. (2022) “Semi-parametric Goodness-of-fit Test for Clustered Point Processes with a Shape-constrained Pair Correlation Function.” Journal of the American Statistical Association, Theory & Method, accepted. (#: Ph.D. student supervised)
- Zhang, J., Cai, B., Zhu, X., Wang, H., Xu, G., Guan, Y. (2022) “Learning Human Activity Patterns using Clustered Point Processes with Active and Inactive States”, Journal of Business & Economic Statistics, online.
- Hessellund, K. B., Xu, G., Guan, Y., and Waagepetersen, R. (2022) “Secondorder Semi-parametric Inference for Multivariate Log Gaussian Cox Processes.” Journal of the Royal Statistical Society, Series C, 71(1), 244– 268.
- Yin, L., Xu, G., Sang, H., and Guan, Y. (2021) “Row-clustering of a Point Process-valued Matrix.” Advances in Neural Information Processing Systems (NeurIPS), 34.
- Hessellund, K. B.(∗), Xu, G.(∗), Guan, Y., and Waagepetersen, R. (2021) “Semiparametric Multinomial Logistic Regression for Multivariate Point Pattern Data.” Journal of the American Statistical Association, Theory & Method, 1-16. (∗: joint first authors with equal contributions.)
- Xu, G., Wang, M., Bian, J., Burch, T. R., Andrade, S. C., Huang, H., Zhang, J., Guan, Y. (2020) “Semi-parametric Learning of Structured Temporal Point Processes.” Journal of Machine Learning Research, 21(192), 1-39.
- Xu, G., Zhao, C., Jalilian, A., Waagepetersen, R., Zhang, J., Guan, Y. (2020) “Nonparametric Estimation of the Pair Correlation Function of Replicated Inhomogeneous Point Processes.” Electronic Journal of Statistics, 14, 3730-3765.
- Xu, G., Zhu, H., Lee, J. J. (2020) “Borrowing Strength and Borrowing Index for Bayesian Hierarchical Models.” Computational Statistics & Data Analysis, 144, 106901.
- Xu, G., Shang, Z., Cheng, G. (2019) “Distributed Generalized Cross-Validation for Divide-and-Conquer Kernel Ridge Regression and its Asymptotic Optimality.” Journal of Computational and Graphical Statistics, 28, 891-908.
- Xu, G., Waagepetersen, R., Guan, Y. (2019) “Stochastic Quasi-likelihood for Case-Control Point Pattern Data.” Journal of the American Statistical Association, Theory & Method, 114, 631-644.
- Xu, G., Shang, Z., Cheng, G. (2018) “Optimal Tuning Parameter Selection for the Divide-and-conquer Kernel Ridge Regression with Massive Data.” Proceedings of the 35th International Conference on Machine Learning (ICML, Oral) 80, 5483-5491.
- Xu, G., Genton, M. (2017) “Tukey’s g-and-h Random Fields.” Journal of the American Statistical Association, Theory & Method, 112, 1236-1249.
- Xu, G., Genton, M. (2016) “Tukey Max-Stable Processes for Spatial Extremes.” Spatial Statistics, 18, 431-443.
- Xu, G., Genton, M. (2015) “Efficient Maximum Approximated Likelihood Inference for Tukey’s g-and-h Distribution.” Computational Statistics & Data Analysis, 91, 78-91.
- Xu, G., Liang, F., Genton, M.G. (2015) “A Bayesian Spatio-temporal Geostatistical Model with an Auxiliary Lattice for Large Datasets.” Statistica Sinica, 25, 61-79.
- Xu, G., Wang, S., Huang, J.Z. (2014) “Focused Information Criterion and Model Averaging Based on Weighted Composite Quantile Regression.” Scandinavian Journal of Statistics, 41, 365-381.
- Xu, G., Huang, J.Z. (2012) “Asymptotic Optimality and Efficient Computation of the Leave-subject-out Cross-validation.” Annals of Statistics. 40, 3003-3030.
- Xu, G., Xiang, Y.B., Wang, S. and Lin, Z.Y. (2012) “Regularization and Variable Selection for Infinite Variance Autoregressive Models.” Journal of Statistical Planning and Inference. 142, 2545-2553.
- Xu, G. and Wang, S. (2011) “A Goodness-of-fit Test of Logistic Regression Based on Case-control Data with Measurement errors.” Biometrika. 98, 877-886.
- Zhang, G., Xia, Y. and Xu, G. (2006), “Instantaneous Availability Assessment of Renewable Component in Exponential Distributions.” Appl. Math. J. Chinese Univ. Ser. B, 2006, 21(4): 397-404.
Interdisciplinary Collaboration
- Chen, X., Lin, L., et al., Xu, G., Song, Y., Xue, Y., Duan, Q. (2020) “Histogram analysis in predicting the grade and histological subtype of meningiomas based on diffusion kurtosis imaging.” Acta Radiologica, 61(9), 1228-1239.
- Hathout, Y., Liang, C., Ogundele, M., Xu, G., et al. (2019) “Disease-specific and glucocorticoid-responsive serum biomarkers for Duchenne Muscular Dystrophy.” Scientific reports, 9, 1-13.
- Zhao, H., Wang, B., Xu, G., Dong, Y., Dong, Q., Cao, W. (2019) “Collateral grade of the Willis’ circle predicts outcomes of acute intracranial internal carotid artery occlusion before thrombectomy.” Brain and behavior, 9, e01452.
- Lin, L., Xue, Y., et al., Xu, G., Geng, D., Zhang, J. (2019) “Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imaging.” Clinical radiology, 74, 651.e15-651.e23.
- Deng, C., Lin, W., Ye, X., Li, Z., Zhang, Z., Xu, G. (2018) “Social Media Data as a Proxy for Hourly Fine-scale Electric Power Consumption Estimation.” Environment and Planning A: Economy and Space, 50, 1553-1557.
- Lin, L., Chen, X., et al., Xu, G., Duan, Q., Xue, Y. (2018) “Differentiation between vestibular schwannomas and meningiomas with atypical appearance using diffusion kurtosis imaging and three-dimensional arterial spin labeling imaging.” European journal of radiology, 109, 13-18.